MWCC Fact Sheet

Equipment Verification
MWCC has the most comprehensive portfolio of source control equipment to cover a broad range of well characteristics. The Ownership of this system comes with great responsibility to maintain each component in a deployment-ready state so that when deployed, the system functions as intended. System functionality is assured through a combination of initial equipment demonstrations and periodic functional and pressure tests.

Demonstrations

MWCC conducted full field demonstrations of the most critical and complex components of our response system prior to adding them to our portfolio.

Capping Stack Deployment

Under the supervision of the Department of Interior through the Bureau of Safety and Environmental Enforcement (BSEE), MWCC mobilized and deployed its Single Ram Capping Stack onto a subsea demonstration well. During this live demonstration, MWCC stood up a full Incident Command System (ICS) Unified Command structure that operated 24/7, beginning at the time of activation through proof of concept. The capping stack was deployed in the Walker Ridge region of the U.S. Gulf of Mexico from the Laney Chouest vessel. The capping stack was then guided into position and latched onto the demonstration wellhead. MWCC’s team successfully demonstrated operations for all necessary functions of the capping stack. Most importantly, MWCC validated the capping stack could undertake its peak capacity pressure and control a compromised well.

<table>
<thead>
<tr>
<th>Deployment Depth</th>
<th>6,900 Feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>U.S. Gulf of Mexico, Walker Ridge 536</td>
</tr>
<tr>
<td>Deployment Vessel</td>
<td>Laney Chouest</td>
</tr>
</tbody>
</table>
Modular Capture Vessel Deployments

BSEE oversaw the complete loading, connection and hook-up of the hydrocarbon processing systems on MWCC's two MCVs. Each of MWCC's two MCVs are outfitted with up to 10 plug-and-play modules that are loaded onto the vessels in the event of an extended flowback activation. The processing modules were connected to the vessels and hooked up to each other in a System Integration Test.

Once fully outfitted with processing equipment, MWCC's vessels embarked on sea trials to demonstrate deployment readiness, a process witnessed by the United States Coast Guard. In addition, MWCC validated Dynamic Positioning capability, or the ability to maintain a fixed position without anchor or mooring lines. MWCC has engaged in further verification of MCV capability through an extended well test in the U.S. Gulf of Mexico, supported by one of MWCC's member companies. This well test demonstrated successful station keeping through Dynamic Positioning of the vessel and vessel loading and offloading operations.

At alternating five-year intervals, the MCVs are dry-docked, fully removed from the water, to expose the hull and external equipment for detailed inspection. The dry dock also allows MWCC to verify that the mounts for the processing modules have not deflected, meaning the modules will fit seamlessly in place upon re-installation. Once all inspections are complete, the MCVs are returned to service and ready to be outfitted and deployed when needed.
Routine Maintenance

Investing in maintenance and response readiness remains a core piece of MWCC’s operations. Our preventative maintenance and functional testing programs were designed to meet the American Petroleum Institute’s (API) industry-leading requirements for offshore emergency systems and to meet or exceed requirements set forth in the Well Control Rule. In total, MWCC manages 22,000 pieces of equipment. Annually, the organization utilizes 80,000 labor hours and performs 800 maintenance procedures on the Containment System, which helps preserve equipment in ready for deployment condition.

Capping Stacks

MWCC’s capping stacks are essential to our Containment System and our top priority is assuring their functionality during a response. To that end, each capping stack undergoes monthly visual inspections where an inspector examines all of the external components to verify integrity. In accordance with the Well Control Rule, on a quarterly basis, MWCC function tests each capping stack to make sure all valves and rams function precisely as intended. Semi-annually, MWCC conducts pressure verification on each capping stack. During a pressure verification, the capping stack is hooked up to a Hydraulic Pressure Unit (HPU) that creates pressure using a series of pumps to exert a force equal to the flow ratings of each capping stack.

In addition to maintenance routines regularly performed by the MWCC team, the BSEE conducts annual inspections and verifications. Additionally, MWCC uses DNV GL, the world’s largest classification society, to conduct regular independent third-party function verifications on our capping stacks.
Supportive Equipment

MWCC maintains several pieces of supportive equipment at our SURF Shore Base, these include our dispersant stock, water column monitoring kit, wellhead straightening tool and interim collection equipment including top hats and riser insertion tube tools. All support equipment is maintained with the same rigor as our capping stacks and extended flowback equipment. Both visual inspection and function testing are used to verify response readiness.

Modular Capture Vessels & Extended Flowback

MWCC complies with a robust maintenance program approved by the American Bureau of Shipping (ABS), the world’s leader in setting safety standards for tankers and vessels used for offshore energy operations. All required certifications are maintained on both of our two MCVs. Furthermore, BSEE and the United States Coast Guard conduct annual inspections to confirm the vessels are maintained to meet all regulatory standards. The ships are used to transport hydrocarbons from large international oil tankers parked offshore to and from processing and refining facilities onshore, a process called lightering.

The equipment, or topsides processing modules, used to separate the oil from gas on the vessels are stored at our MCV Shore Base in functioning, or warm stacked, condition. Warm stacking indicates that these systems remain fully functioning with the control system turned on, this maintains the integrity of the equipment and confirms that it is deployment ready. System testing and verification meet offshore standards for production facilities as defined in 30CFR250 Sub-part H and are inspected by BSEE at the same frequency as offshore facilities in operation.